Linked Radar Study

Jim Joyce Honeywell International

Linked Radar Study

Radar Fundamentals

Flashlight Analogy

Radars can only see what is inside the illuminated beam

Storm Illuminated by Radar

Storm <u>Not</u> Illuminated by Radar

Radar Sweep Process

Radars send out a pulse, move the antenna, then send out another pulse.

Radar Sweep of a Thunderstorm

The radar display provides a topdown view of the weather slice. Radar Display 50 NM Thunderstorm Illuminated slice of the 25 NM thunderstorm. Beam-Scan Path Radar beam

Hypothesis

• If we could downlink all the airborne radar data from all the aircraft in flight, we would be able to provide very useful data to forecasters and the aviation community.

Objective of the Study

- Take a preliminary look at the coverage of the data that would be made available if all the Air Transport radars were downlinked.
- Identify the key airborne radar issues that need to be taken into account.

Procedure

- Map out the radar coverage in the Continental
 US for a number of different times of day
 - Use actual airplane position data to give 'snapshots' of different points in time
 - Map CONUS coverage assuming that all Air
 Transport aircraft participate by downlinking their radar data
 - Assume the radar data is valid for 7 minutes (same update rate as NEXRAD)

Delimitations

- Aircraft positions are based on 2000 data
- Assume all aircraft are traveling at the same speed (530 mi/hr)
- In order to simplify the preliminary coverage analysis, assume all aircraft are travelling due North or due South.
- BA and Air Cargo aircraft were not included in the analysis

Radar Coverage Analysis

- Assume all aircraft fly at 530 mi/hr
- Assume all radars have a 28 in dish, operate in X-band, have a 120 degree sweep, and have equivalent performance.
- Aircraft altitude and radar tilt were not considered in the coverage analysis
- Assume a 50 mile STC 'Calibration' range

Radar Coverage for Each Aircraft

Data validity = 7 min

AT Aircraft Traffic

August 27, 2000

AT Aircraft Traffic

August 27, 2000

AT Aircraft Traffic

August 27, 2000

Observations

- Coverage varies throughout the day as traffic volume changes
- Gaps in coverage exist even during the highest traffic times

Coverage Issues

- Coverage will be non-determinant
 - Planes won't be in exactly the same place at the same time every day
 - Weather events likely to affect traffic patterns
- Gaps in coverage
 - A handful of airports handle the majority of the Air Transport traffic

Radar Concerns

- Airborne Considerations
 - Ground Returns vs Weather Returns
 - -Tilt Management
 - Altitude Rings
- Limitations
 - Power
 - Beamwidth

Ground Clutter

Pilots are trained to keep a little bit of ground clutter at the edge of the display

- Confidence check
- More likely to illuminate weather

Ground Clutter

Weather and ground returns

Altitude Ring

The energy will travel almost straight down to the earth and back.

Altitude Ring Example

Notice the "altitude ring" is located at about 7 NM. The aircraft is 6.9 NM above the ground.

Airborne Radar Power Limitation

A radar shadow caused by weather attenuation.

A thunderstorm is located forward of the radar shadow.

Thunderstorm

Can't always see the "weather behind the weather"

Radar Beamwidth

X-band, 28 inch diameter antenna

Beamwidth - Horizontal Considerations

Conclusion

- Recommend bringing geographic coverage data to meteorological community
 - Gaps in coverage
 - Non-deterministic coverage areas
 - Coverage variance throughout the day
- Need to make sure to consider airborne radar parameters and issues before implementing weather radar downlink.